Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
1.
Am J Physiol Cell Physiol ; 326(4): C1193-C1202, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38581669

RESUMEN

Satellite cells (SCs) and fibroadipogenic progenitors (FAPs) are progenitor populations found in muscle that form new myofibers postinjury. Muscle development, regeneration, and tissue-engineering experiments require robust progenitor populations, yet their isolation and expansion are difficult given their scarcity in muscle, limited muscle biopsy sizes in humans, and lack of methodological detail in the literature. Here, we investigated whether a dispase and collagenase type 1 and 2 cocktail could allow dual isolation of SCs and FAPs, enabling significantly increased yield from human skeletal muscle. Postdissociation, we found that single cells could be sorted into CD56 + CD31-CD45- (SC) and CD56-CD31-CD45- (FAP) cell populations, expanded in culture, and characterized for lineage-specific marker expression and differentiation capacity; we obtained ∼10% SCs and ∼40% FAPs, with yields twofold better than what is reported in current literature. SCs were PAX7+ and retained CD56 expression and myogenic fusion potential after multiple passages, expanding up to 1012 cells. Conversely, FAPs expressed CD140a and differentiated into either fibroblasts or adipocytes upon induction. This study demonstrates robust isolation of both SCs and FAPs from the same muscle sample with SC recovery more than two times higher than previously reported, which could enable translational studies for muscle injuries.NEW & NOTEWORTHY We demonstrated that a dispase/collagenase cocktail allows for simultaneous isolation of SCs and FAPs with 2× higher SC yield compared with other studies. We provide a thorough characterization of SC and FAP in vitro expansion that other studies have not reported. Following our dissociation, SCs and FAPs were able to expand by up to 1012 cells before reaching senescence and maintained differentiation capacity in vitro demonstrating their efficacy for clinical translation for muscle injury.


Asunto(s)
Endopeptidasas , Músculo Esquelético , Células Satélite del Músculo Esquelético , Humanos , Músculo Esquelético/metabolismo , Diferenciación Celular/fisiología , Células Satélite del Músculo Esquelético/metabolismo , Fibroblastos/metabolismo
2.
J Cell Sci ; 136(23)2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37994565

RESUMEN

Matrix remodeling outcomes largely dictate patient survival post myocardial infarction. Moreover, human-restricted noncoding regulatory elements have been shown to worsen fibrosis, but their mechanism of action remains elusive. Here, we demonstrate, using induced pluripotent stem cell-derived cardiac fibroblasts (iCFs), that inflammatory ligands abundant in the remodeling heart after infarction activate AP-1 transcription factor signaling pathways resulting in fibrotic responses. This observed signaling induces deposition of fibronectin matrix and is further capable of supporting immune cell adhesion; pathway inhibition blocks iCF matrix production and cell adhesion. Polymorphisms in the noncoding regulatory elements within the 9p21 locus (also referred to as ANRIL) redirect stress programs, and in iCFs, they transcriptionally silence the AP-1 inducible transcription factor GATA5. The presence of these polymorphisms modulate iCF matrix production and assembly and reduce cell-cell signaling. These data suggest that this signaling axis is a critical modulator of cardiac disease models and might be influenced by noncoding regulatory elements.


Asunto(s)
Miocardio , Factor de Transcripción AP-1 , Humanos , Fibroblastos/metabolismo , Fibrosis , Corazón , Miocardio/metabolismo , Transducción de Señal , Factor de Transcripción AP-1/genética , Factor de Transcripción AP-1/metabolismo
3.
Artículo en Inglés | MEDLINE | ID: mdl-37927406

RESUMEN

With the advent of induced pluripotent stem cells and modern differentiation protocols, many advances in our understanding of disease have been made possible by in vitro disease modeling; in some cases, their use may have supplanted animal models. Yet in vitro models often rely on rigid cell culture substrates that could limit our ability to completely reproduce human disease in a dish. Nascent work, however, suggests that the combination of biomaterials and/or advanced microphysiological systems-which better recapitulate tissue properties-with stem cells expressing disease mimicking genetics, could substantially improve current disease modeling efforts where genetics alone is insufficient. This review will highlight such recent advances as well as review current challenges that the fields must overcome to create more personalized therapeutics in the future.

4.
Biomaterials ; 302: 122363, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37898021

RESUMEN

Despite numerous efforts to generate mature human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs), cells often remain immature, electrically isolated, and may not reflect adult biology. Conductive polymers are attractive candidates to facilitate electrical communication between hPSC-CMs, especially at sub-confluent cell densities or diseased cells lacking cell-cell junctions. Here we electrospun conductive polymers to create a conductive fiber mesh and assess if electrical signal propagation is improved in hPSC-CMs seeded on the mesh network. Matrix characterization indicated fiber structure remained stable over weeks in buffer, scaffold stiffness remained near in vivo cardiac stiffness, and electrical conductivity scaled with conductive polymer concentration. Cells remained adherent and viable on the scaffolds for at least 5 days. Transcriptomic profiling of hPSC-CMs cultured on conductive substrates for 3 days showed upregulation of cardiac and muscle-related genes versus non-conductive fibers. Structural proteins were more organized and calcium handling was improved on conductive substrates, even at sub-confluent cell densities; prolonged culture on conductive scaffolds improved membrane depolarization compared to non-conductive substrates. Taken together, these data suggest that blended, conductive scaffolds are stable, supportive of electrical coupling in hPSC-CMs, and promote maturation, which may improve our ability to model cardiac diseases and develop targeted therapies.


Asunto(s)
Miocitos Cardíacos , Células Madre Pluripotentes , Humanos , Polímeros/metabolismo , Línea Celular , Diferenciación Celular , Conductividad Eléctrica
5.
Elife ; 122023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37404133

RESUMEN

Hypoplastic left heart syndrome (HLHS) is a severe congenital heart disease (CHD) with a likely oligogenic etiology, but our understanding of the genetic complexities and pathogenic mechanisms leading to HLHS is limited. We performed whole genome sequencing (WGS) on 183 HLHS patient-parent trios to identify candidate genes, which were functionally tested in the Drosophila heart model. Bioinformatic analysis of WGS data from an index family of a HLHS proband born to consanguineous parents prioritized 9 candidate genes with rare, predicted damaging homozygous variants. Of them, cardiac-specific knockdown (KD) of mitochondrial MICOS complex subunit dCHCHD3/6 resulted in drastically compromised heart contractility, diminished levels of sarcomeric actin and myosin, reduced cardiac ATP levels, and mitochondrial fission-fusion defects. These defects were similar to those inflicted by cardiac KD of ATP synthase subunits of the electron transport chain (ETC), consistent with the MICOS complex's role in maintaining cristae morphology and ETC assembly. Five additional HLHS probands harbored rare, predicted damaging variants in CHCHD3 or CHCHD6. Hypothesizing an oligogenic basis for HLHS, we tested 60 additional prioritized candidate genes from these patients for genetic interactions with CHCHD3/6 in sensitized fly hearts. Moderate KD of CHCHD3/6 in combination with Cdk12 (activator of RNA polymerase II), RNF149 (goliath, E3 ubiquitin ligase), or SPTBN1 (ß-Spectrin, scaffolding protein) caused synergistic heart defects, suggesting the likely involvement of diverse pathways in HLHS. Further elucidation of novel candidate genes and genetic interactions of potentially disease-contributing pathways is expected to lead to a better understanding of HLHS and other CHDs.


Asunto(s)
Cardiopatías Congénitas , Síndrome del Corazón Izquierdo Hipoplásico , Humanos , Síndrome del Corazón Izquierdo Hipoplásico/genética , Actomiosina , Biología Computacional , Adenosina Trifosfato , Proteínas Mitocondriales
6.
Proc Natl Acad Sci U S A ; 120(24): e2217122120, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37276403

RESUMEN

9p21.3 locus polymorphisms have the strongest correlation with coronary artery disease, but as a noncoding locus, disease connection is enigmatic. The lncRNA ANRIL found in 9p21.3 may regulate vascular smooth muscle cell (VSMC) phenotype to contribute to disease risk. We observed significant heterogeneity in induced pluripotent stem cell-derived VSMCs from patients homozygous for risk versus isogenic knockout or nonrisk haplotypes. Subpopulations of risk haplotype cells exhibited variable morphology, proliferation, contraction, and adhesion. When sorted by adhesion, risk VSMCs parsed into synthetic and contractile subpopulations, i.e., weakly adherent and strongly adherent, respectively. Of note, >90% of differentially expressed genes coregulated by haplotype and adhesion and were associated with Rho GTPases, i.e., contractility. Weakly adherent subpopulations expressed more short isoforms of ANRIL, and when overexpressed in knockout cells, ANRIL suppressed adhesion, contractility, and αSMA expression. These data suggest that variable lncRNA penetrance may drive mixed functional outcomes that confound pathology.


Asunto(s)
Enfermedad de la Arteria Coronaria , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Músculo Liso Vascular/metabolismo , Plasticidad de la Célula/genética , Enfermedad de la Arteria Coronaria/genética , Fenotipo , Miocitos del Músculo Liso/metabolismo , Proliferación Celular , Células Cultivadas
7.
Cell Stem Cell ; 30(6): 750-765, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37267912

RESUMEN

Advances in biomaterial science have allowed for unprecedented insight into the ability of material cues to influence stem cell function. These material approaches better recapitulate the microenvironment, providing a more realistic ex vivo model of the cell niche. However, recent advances in our ability to measure and manipulate niche properties in vivo have led to novel mechanobiological studies in model organisms. Thus, in this review, we will discuss the importance of material cues within the cell niche, highlight the key mechanotransduction pathways involved, and conclude with recent evidence that material cues regulate tissue function in vivo.


Asunto(s)
Señales (Psicología) , Mecanotransducción Celular , Células Madre , Materiales Biocompatibles
8.
Mol Biol Cell ; 34(9): ar89, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37342880

RESUMEN

Matrix stiffening is ubiquitous in solid tumors and can direct epithelial-mesenchymal transition (EMT) and cancer cell migration. Stiffened niche can even cause poorly invasive oral squamous cell carcinoma (OSCC) cell lines to acquire a less adherent, more migratory phenotype, but mechanisms and durability of this acquired "mechanical memory" are unclear. Here, we observed that contractility and its downstream signals could underlie memory acquisition; invasive SSC25 cells overexpress myosin II (vs. noninvasive Cal27 cells) consistent with OSCC. However, prolonged exposure of Cal27 cells to a stiff niche or contractile agonists up-regulated myosin and EMT markers and enabled them to migrate as fast as SCC25 cells, which persisted even when the niche softened and indicated "memory" of their prior niche. Stiffness-mediated mesenchymal phenotype acquisition required AKT signaling and was also observed in patient samples, whereas phenotype recall on soft substrates required focal adhesion kinase (FAK) activity. Phenotype durability was further observed in transcriptomic differences between preconditioned Cal27 cells cultured without or with FAK or AKT antagonists, and such transcriptional differences corresponded to discrepant patient outcomes. These data suggest that mechanical memory, mediated by contractility via distinct kinase signaling, may be necessary for OSCC to disseminate.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , Humanos , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Neoplasias de la Boca/metabolismo , Neoplasias de la Boca/patología , Carcinoma de Células Escamosas de Cabeza y Cuello , Proteínas Proto-Oncogénicas c-akt , Movimiento Celular , Transición Epitelial-Mesenquimal , Línea Celular Tumoral
9.
Nat Aging ; 3(1): 17-33, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36845078

RESUMEN

As we age, structural changes contribute to progressive decline in organ function, which in the heart act through poorly characterized mechanisms. Taking advantage of the short lifespan and conserved cardiac proteome of the fruit fly, we found that cardiomyocytes exhibit progressive loss of Lamin C (mammalian Lamin A/C homologue) with age, coincident with decreasing nuclear size and increasing nuclear stiffness. Premature genetic reduction of Lamin C phenocopies aging's effects on the nucleus, and subsequently decreases heart contractility and sarcomere organization. Surprisingly, Lamin C reduction downregulates myogenic transcription factors and cytoskeletal regulators, possibly via reduced chromatin accessibility. Subsequently, we find a role for cardiac transcription factors in regulating adult heart contractility and show that maintenance of Lamin C, and cardiac transcription factor expression, prevents age-dependent cardiac decline. Our findings are conserved in aged non-human primates and mice, demonstrating that age-dependent nuclear remodeling is a major mechanism contributing to cardiac dysfunction.


Asunto(s)
Núcleo Celular , Cardiopatías , Ratones , Animales , Núcleo Celular/genética , Miocitos Cardíacos/metabolismo , Cromatina/metabolismo , Cardiopatías/metabolismo , Factores de Transcripción/genética , Mamíferos/genética
10.
APL Bioeng ; 6(4): 040401, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36536804
11.
Front Bioeng Biotechnol ; 10: 1048731, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36406234

RESUMEN

The fields of tissue engineering and disease modeling have become increasingly cognizant of the need to create complex and mature structures in vitro to adequately mimic the in vivo niche. Specifically for neural applications, human brain cortical organoids (COs) require highly stratified neurons and glial cells to generate synaptic functions, and to date, most efforts achieve only fetal functionality at best. Moreover, COs are usually avascular, inducing the development of necrotic cores, which can limit growth, development, and maturation. Recent efforts have attempted to vascularize cortical and other organoid types. In this review, we will outline the components of a fully vascularized CO as they relate to neocortical development in vivo. These components address challenges in recapitulating neurovascular tissue patterning, biomechanical properties, and functionality with the goal of mirroring the quality of organoid vascularization only achieved with an in vivo host. We will provide a comprehensive summary of the current progress made in each one of these categories, highlighting advances in vascularization technologies and areas still under investigation.

12.
J Orthop Surg Res ; 17(1): 440, 2022 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-36195913

RESUMEN

BACKGROUND: Conditions affecting skeletal muscle, such as chronic rotator cuff tears, low back pain, dystrophies, and many others, often share changes in muscle phenotype: intramuscular adipose and fibrotic tissue increase while contractile tissue is lost. The underlying changes in cell populations and cell ratios observed with these phenotypic changes complicate the interpretation of tissue-level transcriptional data. Novel single-cell transcriptomics has limited capacity to address this problem because muscle fibers are too long to be engulfed in single-cell droplets and single nuclei transcriptomics are complicated by muscle fibers' multinucleation. Therefore, the goal of this project was to evaluate the potential and challenges of a spatial transcriptomics technology to add dimensionality to transcriptional data in an attempt to better understand regional cellular activity in heterogeneous skeletal muscle tissue. METHODS: The 3' Visium spatial transcriptomics technology was applied to muscle tissue of a rabbit model of rotator cuff tear. Healthy control and tissue collected at 2 and 16 weeks after tenotomy was utilized and freshly snap frozen tissue was compared with tissue stored for over 6 years to evaluate whether this technology is retrospectively useful in previously acquired tissues. Transcriptional information was overlayed with standard hematoxylin and eosin (H&E) stains of the exact same histological sections. RESULTS: Sequencing saturation and number of genes detected was not affected by sample storage duration. Unbiased clustering matched the underlying tissue type-based on H&E assessment. Connective-tissue-rich areas presented with lower unique molecular identifier counts are compared with muscle fibers even though tissue permeabilization was standardized across the section. A qualitative analysis of resulting datasets revealed heterogeneous fiber degeneration-regeneration after tenotomy based on (neonatal) myosin heavy chain 8 detection and associated differentially expressed gene analysis. CONCLUSIONS: This protocol can be used in skeletal muscle to explore spatial transcriptional patterns and confidently relate them to the underlying histology, even for tissues that have been stored for up to 6 years. Using this protocol, there is potential for novel transcriptional pathway discovery in longitudinal studies since the transcriptional information is unbiased by muscle composition and cell type changes.


Asunto(s)
Lesiones del Manguito de los Rotadores , Animales , Eosina Amarillenta-(YS)/metabolismo , Hematoxilina/metabolismo , Músculo Esquelético/patología , Cadenas Pesadas de Miosina/metabolismo , Conejos , Estudios Retrospectivos , Manguito de los Rotadores/metabolismo , Lesiones del Manguito de los Rotadores/patología , Transcriptoma/genética
13.
Sci Adv ; 8(21): eabl9806, 2022 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-35613278

RESUMEN

Semaphorins were originally identified as axonal guidance molecules, but they also control processes such as vascular development and tumorigenesis. The downstream signaling cascades of Semaphorins in these biological processes remain unclear. Here, we show that the class 3 Semaphorins (SEMA3s) activate the Hippo pathway to attenuate tissue growth, angiogenesis, and tumorigenesis. SEMA3B restoration in lung cancer cells with SEMA3B loss of heterozygosity suppresses cancer cell growth via activating the core Hippo kinases LATS1/2 (large tumor suppressor kinase 1/2). Furthermore, SEMA3 also acts through LATS1/2 to inhibit angiogenesis. We identified p190RhoGAPs as essential partners of the SEMA3A receptor PlexinA in Hippo regulation. Upon SEMA3 treatment, PlexinA interacts with the pseudo-guanosine triphosphatase (GTPase) domain of p190RhoGAP and simultaneously recruits RND GTPases to activate p190RhoGAP, which then stimulates LATS1/2. Disease-associated etiological factors, such as genetic lesions and oscillatory shear, diminish Hippo pathway regulation by SEMA3. Our study thus discovers a critical role of Hippo signaling in mediating SEMA3 physiological function.

14.
Int J Mol Sci ; 23(2)2022 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-35055055

RESUMEN

Dilated cardiomyopathy (DCM) is a life-threatening form of heart disease that is typically characterized by progressive thinning of the ventricular walls, chamber dilation, and systolic dysfunction. Multiple mutations in the gene encoding filamin C (FLNC), an actin-binding cytoskeletal protein in cardiomyocytes, have been found in patients with DCM. However, the mechanisms that lead to contractile impairment and DCM in patients with FLNC variants are poorly understood. To determine how FLNC regulates systolic force transmission and DCM remodeling, we used an inducible, cardiac-specific FLNC-knockout (icKO) model to produce a rapid onset of DCM in adult mice. Loss of FLNC reduced systolic force development in single cardiomyocytes and isolated papillary muscles but did not affect twitch kinetics or calcium transients. Electron and immunofluorescence microscopy showed significant defects in Z-disk alignment in icKO mice and altered myofilament lattice geometry. Moreover, a loss of FLNC induces a softening myocyte cortex and structural adaptations at the subcellular level that contribute to disrupted longitudinal force production during contraction. Spatially explicit computational models showed that these structural defects could be explained by a loss of inter-myofibril elastic coupling at the Z-disk. Our work identifies FLNC as a key regulator of the multiscale ultrastructure of cardiomyocytes and therefore plays an important role in maintaining systolic mechanotransmission pathways, the dysfunction of which may be key in driving progressive DCM.


Asunto(s)
Biomarcadores , Cardiomiopatía Dilatada/etiología , Cardiomiopatía Dilatada/metabolismo , Filaminas/deficiencia , Predisposición Genética a la Enfermedad , Miocitos Cardíacos/metabolismo , Animales , Calcio/metabolismo , Señalización del Calcio , Cardiomiopatía Dilatada/diagnóstico , Costameras/genética , Costameras/metabolismo , Modelos Animales de Enfermedad , Femenino , Filaminas/metabolismo , Expresión Génica , Estudios de Asociación Genética , Masculino , Ratones , Ratones Noqueados , Modelos Biológicos , Mutación , Contracción Miocárdica/genética
15.
J Mol Cell Cardiol ; 164: 58-68, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34826415

RESUMEN

Since the initial isolation of human embryonic stem cells and subsequent discovery of reprogramming methods for somatic cells, thousands of protocols have been developed to create each of the hundreds of cell types found in-vivo with significant focus on disease-prone systems, e.g., cardiovascular. Robust protocols exist for many of these cell types, except for cardiac fibroblasts (CF). Very recently, several competing methods have been developed to generate these cells through a developmentally conserved epicardial pathway. Such methods generate epicardial cells, but here we report that prolonged exposure to growth factors such as bFGF induces fibroblast spindle-like morphology and similar chromatin architecture to primary CFs. Media conditions for growth and assays are provided, as well as suggestions for seeding densities and timepoints for protein harvest of extracellular matrix. We demonstrate marker expression and matrix competency of resultant cells as shown next to primary human cardiac fibroblasts. These methods provide additional guidance to the original protocol and result in an increasingly stable phenotype.


Asunto(s)
Células Madre Embrionarias Humanas , Células Madre Pluripotentes Inducidas , Diferenciación Celular , Células Cultivadas , Reprogramación Celular , Cromatina/metabolismo , Fibroblastos/metabolismo , Corazón , Humanos , Células Madre Pluripotentes Inducidas/metabolismo
16.
Curr Opin Biotechnol ; 74: 122-128, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34861477

RESUMEN

Applications for stem cells have ranged from therapeutic interventions to more conventional screening and in vitro modeling, but significant limitations to each is due to the lack of maturity from decades old monolayer protocols. While those methods remain the 'gold standard,' newer three-dimensional methods, when combined with engineered niche, stand to significantly improve cell maturity and enable new applications. Here in three parts, we first discuss past methods, and where and why we believe those methods produced suboptimal myocytes. Second, we note how newer methods are moving the field into an era of cell mechanical, electrical, and biological maturity. Finally, we highlight how these improvements will solve issues of scale and engraftment to yield clinical success. It is our conclusion that only through a combination of diverse cell populations and engineered niche will we create an engineered heart tissue with the maturity and vasculature to integrate successfully into a host.


Asunto(s)
Corazón , Ingeniería de Tejidos , Diferenciación Celular , Ingeniería de Tejidos/métodos
17.
APL Bioeng ; 5(3): 030401, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34258496

RESUMEN

Cells are exposed to a variety of mechanical forces in their daily lives, especially endothelial cells that are stretched from vessel distention and are exposed to hemodynamic shear stress from a blood flow. Exposure to excessive forces can induce a disease, but the molecular details on how these cells perceive forces, transduce them into biochemical signals and genetic events, i.e., mechanotransduction, and integrate them into physiological or pathological changes remain unclear. However, seminal studies in endothelial cells over the past several decades have begun to elucidate some of these signals. These studies have been highlighted in APL Bioengineering and elsewhere, describing a complex temporal pattern where forces are sensed immediately by ion channels and force-dependent conformational changes in surface proteins, followed by biochemical cascades, cytoskeletal contraction, and nuclear remodeling that can affect long-term changes in endothelial morphology and fate. Key examples from the endothelial literature that have established these pathways include showing that integrins and Flk-1 or VE-cadherin act as shear stress transducers, activating downstream proteins such as Cbl and Nckß or Src, respectively. In this Editorial, we summarize a recent literature highlighting these accomplishments, noting the engineering tools and analysis methods used in these discoveries while also highlighting unanswered questions.

18.
APL Bioeng ; 5(3): 036102, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34327295

RESUMEN

Single nucleotide polymorphisms (SNPs) are exceedingly common in non-coding loci, and while they are significantly associated with a myriad of diseases, their specific impact on cellular dysfunction remains unclear. Here, we show that when exposed to external stressors, the presence of risk SNPs in the 9p21.3 coronary artery disease (CAD) risk locus increases endothelial monolayer and microvessel dysfunction. Endothelial cells (ECs) derived from induced pluripotent stem cells of patients carrying the risk haplotype (R/R WT) differentiated similarly to their non-risk and isogenic knockout (R/R KO) counterparts. Monolayers exhibited greater permeability and reactive oxygen species signaling when the risk haplotype was present. Addition of the inflammatory cytokine TNFα further enhanced EC monolayer permeability but independent of risk haplotype; TNFα also did not substantially alter haplotype transcriptomes. Conversely, when wall shear stress was applied to ECs in a microfluidic vessel, R/R WT vessels were more permeable at lower shear stresses than R/R KO vessels. Transcriptomes of sheared cells clustered more by risk haplotype than by patient or clone, resulting in significant differential regulation of EC adhesion and extracellular matrix genes vs static conditions. A subset of previously identified CAD risk genes invert expression patterns in the presence of high shear concomitant with altered cell adhesion genes, vessel permeability, and endothelial erosion in the presence of the risk haplotype, suggesting that shear stress could be a regulator of non-coding loci with a key impact on CAD.

19.
J Am Acad Orthop Surg ; 29(16): e815-e819, 2021 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-34106093

RESUMEN

Biologically augmented surgical treatments of orthopaedic conditions are increasingly popular. Bone marrow aspirate concentrate is a key orthobiologic tissue source, and the field is moving from the standard iliac crest marrow aspiration toward local aspirations of marrow depots that are accessible during the standard-of-care procedures in an attempt to reduce morbidity, surgery time, and cost. Here, we present the aspiration of the standard iliac marrow depot, but through a novel acetabular approach during total hip arthroplasty. This procedure markedly simplifies biologic augmentation with bone marrow aspirate concentrate in this large patient cohort.


Asunto(s)
Artroplastia de Reemplazo de Cadera , Médula Ósea , Acetábulo/cirugía , Células de la Médula Ósea , Humanos , Ilion
20.
Methods Mol Biol ; 2299: 217-226, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34028746

RESUMEN

Atomic force microscopy (AFM) has emerged as a popular method for determining the mechanical properties of cells, their components, and biomaterials. Here, we describe AFM setup and application to obtain stiffness measurements from single indentations for hydrogels and myofibroblasts.


Asunto(s)
Fibroblastos/citología , Microscopía de Fuerza Atómica/métodos , Miofibroblastos/citología , Animales , Transdiferenciación Celular , Células Cultivadas , Módulo de Elasticidad , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...